ESP32 and Arduino Projects
-
Arduino ☛ Assess your aquarium’s health with an AI-enabled ultrasonic sensor
The other half of the monitoring system consists of a DFRobot UNIHIKER single-board computer running a RetinaNet model that detects and classifies chemical tests as either sterile, dangerous, or polluted. The results from it and the Nano ESP32 are combined, presented on a large screen, and sent to users via a Telegram bot.
-
Hackster ☛ AI-based Aquatic Ultrasonic Imaging & Chemical Water Testing - Hackster.io
Since Nano ESP32 is a brand-new and high-performance Arduino IoT development board providing a u-blox® NORA-W106 (ESP32-S3) module, 16 MB (128 Mbit) Flash, and an embedded antenna, I decided to utilize Nano ESP32 to collect ultrasonic scan (imaging) information and run my neural network model. Since I needed to utilize submersible equipment to generate precise aquatic ultrasonic scans, I decided to connect a DFRobot URM15 - 75KHZ ultrasonic sensor (via RS485-to-UART adapter module) and a DS18B20 waterproof temperature sensor to Nano ESP32. To produce accurate ultrasonic images from single data points and match the given image shape (20 x 20 — 400 points), I added a DFRobot 6-axis accelerometer. Finally, I connected an SSD1306 OLED display and four control buttons to program a feature-rich user interface.