Astro Pi (Raspberry Pi) and Arduino Projects
-
Astro Pi Mission Zero 2022/23 is open for young people
Inspire young people about coding and space science with Astro Pi Mission Zero. Mission Zero offers young people the chance to write code that will run in space! It opens for participants today.
-
A DIY non-contact digital tachometer for machinists | Arduino Blog
A tachometer is a device that counts the revolutions of a rotating object, with the most well-known example being the automotive tachometer that monitors the revolutions per minute (RPMs) of an internal combustion engine. But tachometers are useful, and sometimes a requirement, in many other applications. RPM is a very important datum when working with machine tools like lathes and milling machines, which is what this DIY non-contact digital tachometer was designed to accommodate.
The term “feeds and speeds” refers to the parameters a machinist uses to achieve the ideal tool load. A vertical milling machine’s end mill, for example, can only remove a certain amount of material with each stroke of each cutting flute. For that reason, it is imperative that a machinist know how fast the end mill is rotating. Most modern machine tools (not just CNC tools, but also manual tools) include a digital RPM display. But many older machines and some modern machines with low-cost VFDs (variable-frequency drives) do not and that makes it very difficult to maintain optimal load. This DIY device addresses those shortcomings in an affordable way.
-
Zen sand garden in a suitcase doubles as MIDI controller | Arduino Blog
At the shallow end of the pool, a MIDI (musical instrument digital interface) controller can be as simple as a handful of buttons that correspond to different notes. But even as one wades into the deep end of the pool, MIDI controllers tend to still look like hunks of plastic with some knobs and keys. Redditor Gilou_ wanted something that felt more organic (actually, “inorganic” if we want to be technical) and so they built this unusual MIDI controller that looks like a Japanese-style sand garden in a suitcase.
If you stumbled across this device without any context, you would assume that is exactly what it is: some kind of portable sand garden. Opening the top of the suitcase reveals a handful of dark stones resting in a bed of sand. Traditional rakes and scoops hang in straps on the lid of the suitcase. But underneath the sand there are a few electronic components that turn the sound garden into a functional instrument. A piezoelectric pickup, like the kind you’d see on some acoustic-electric guitars, in the sand translates the vibrations of sand raking and sifting into an audio signal that feeds into a computer’s sound card.